Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol Drug Des ; 98(5): 733-750, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34310065

RESUMO

Type 2 diabetes is characterized by chronic hyperglycemia. Insulin, a hormone secreted from pancreatic ß-cells, decreases blood glucose levels, and glucagon, a hormone secreted from pancreatic α-cells, increases blood glucose levels by counterregulation of insulin through stimulation of hepatic glucose production. In diabetic patients, dysregulation of glucagon secretion contributes to hyperglycemia. Thus, inhibition of the glucagon receptor is one strategy for the treatment of hyperglycemia in type 2 diabetes. In this paper, we report a series of biphenylsulfonamide derivatives that were designed, synthesized, and then evaluated by cAMP and hepatic glucose production assays as glucagon receptor antagonists. Of these, compound 7aB-3 decreased glucagon-induced cAMP production and glucagon-induced glucose production in the in vitro assays. Glucagon challenge tests and glucose tolerance tests showed that compound 7aB-3 significantly inhibited glucagon-induced glucose increases and improved glucose tolerance. These results suggest that compound 7aB-3 has therapeutic potential for the treatment of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/síntese química , Receptores de Glucagon/antagonistas & inibidores , Sulfonamidas/síntese química , Animais , Diabetes Mellitus Experimental , Glucagon/metabolismo , Glucose/metabolismo , Teste de Tolerância a Glucose , Humanos , Hipoglicemiantes/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...